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SCATTERING OF NONSPHERICAL PARTICLES REBOUNDING

FROM A SMOOTH AND A ROUGH SURFACE

IN A HIGH-SPEED GAS–PARTICLE FLOW

UDC 532.529.5S. V. Panfilov and Yu. M. Tsirkunov

Scattering indicatrices of nonspherical particles rebounding from a smooth and a rough surface are
obtained by direct Monte Carlo simulations. Particles shaped as ellipsoids of revolution, rectangular
prisms, and prisms with truncated vertices are considered. Surface roughness is defined as a two-
dimensional profile whose scattering characteristics are close to those of real roughness induced by
abrasive erosion of the surface in a high-speed gas–particle flow. Impact interaction of an individual
particle with the surface is considered in a three-dimensional formulation. The scattering indicatrices
of reflected particles are found to depend substantially on the particle shape in the case of rebound
from a smooth surface and to be almost independent of the particle shape if the particles rebound
from a rough surface.

Key words: impact interaction of particles with the wall, nonspherical particles, smooth and
rough surfaces, scattering indicatrices.

Introduction. In a two-phase gas–particle flow over a body or an obstacle, the particles usually collide with
the surface and rebound (reflect) from the latter. Particle reflection plays an important role in formation of the flow
structure and the fields of parameters of the disperse phase. In most papers dealing with numerical simulations of
confined gas–particle flows, the particles are assumed to be spherical and the surfaces are assumed to be smooth;
in addition, various models of reflection of an individual particle from the wall are used. In real dusty gas flows,
however, the particle shape normally differs from spherical (ashes, silica sand, and various commercial powders),
which is responsible for the random character of their reflection. Such particles are scattered after rebounding
from the surface, even if the surface is smooth. Real surfaces are normally rough owing to their prior mechanical
treatment. Moreover, even an initially smooth surface rapidly becomes rough in a high-speed flow because of
abrasive erosion. Surface roughness is the second important factor responsible for the random character of particle
reflection.

It was noted [1–3] that it is important to take surface roughness into account, and various approaches to
roughness modeling were proposed. Tsirkunov and Panfilov [4] reviewed and analyzed various models of surface
roughness. Sommerfeld [5] demonstrated that the calculated and experimental parameters of motion of reflected
particles can be substantially different because of the assumption of a spherical shape, even in the case of isometric
particles. Crowe et al. [6] described the general approach to formulating and solving the problem of rebound of
an arbitrarily shaped particle from a smooth surface, as applied to modeling of two-phase gas-particle flows. The
increasing interest in effects of surface roughness and nonspherical particle shapes is caused by the development of
more realistic numerical models of two-phase flows in the vicinity of confining surfaces.

The main objective of the present work was to study the characteristics of random scattering of nonspherical
particles reflected from a smooth and a rough surface. Particles of three different shapes were considered: ellipsoids
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Fig. 1. Schematic orientation of particles of different shapes: ellipsoid (a), prism (b), and rectangular
prism with truncated vertices (c).

of revolution, rectangular prisms, and prisms with truncated vertices. These shapes are close to the shapes of many
real particles. Roughness caused by abrasive erosion of the surface exposed to a high-speed flow of a gas with
solid particles was studied. The impact of particles on the wall was considered in a three-dimensional formulation.
A similar problem in a simplified two-dimensional formulation was previously considered in [7].

1. Model of Impact Interaction of a Particle with a Solid Surface. First we analyze the particle
interaction with a smooth flat wall. We introduce a right-hand Cartesian coordinate system Oxyz, such that the
plane Oxz coincides with the wall surface, and the unit vector of the Oy axis is external with respect to the wall.
The location of a nonspherical particle moving in physical space is determined not only by the coordinates of its
center of mass (xp, yp, zp) but also by the particle orientation. We also introduce a moving particle-fixed right-hand
Cartesian coordinate system Opξηζ, whose origin coincides with the center of mass of the particle, and the axes are
directed along the main axes of inertia. The orientation of this particle-fixed coordinate system (and, hence, of the
particle itself) with respect to the coordinate system Oxyz at any instant of time is defined by three Euler angles
(ϕ, ψ, and θ) (Fig. 1).

Let the velocity vector of the center of mass of the particle Vp, the vector of angular velocity of particle
rotation ωp before the impact, and particle orientation (angles ϕ, ψ, and θ) at the impact instant be known. The
sought quantities are the velocities Vp and ωp after the impact. The time of impact interaction of the particle with
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Fig. 2. Schematic interaction of a particle with a flat surface: C is the contact point.

the wall δt is assumed to be very small; hence, the impact can be considered as instantaneous. We also assume
that the particle location with respect to the wall is not changed by the impact, and the particle–surface contact
during the impact occurs at a point (Fig. 2). If the contact configuration is a line or a surface (i.e., if the particle
collides with the surface by the prism rib or face), the contact point is assumed to be the geometric center of the
corresponding line or surface.

We write the equations that describe the changes in the momentum and the angular momentum of the
particle during the impact with the particle parameters before and after the impact denoted by the superscripts
minus and plus:

mpΔVp ≡ mp(V +
p − V −

p ) =

δt∫

0

fc(t) dt = S,

‖Jp‖Δωp ≡ ‖Jp‖ (ω+
p − ω−

p ) =

δt∫

0

[rc × fc(t)] dt = rc × S.

(1)

Here mp is the particle mass, fc and S are the force and the impact momentum acting on the particle at the contact
point, ‖Jp‖ is the tensor of inertia of the particle, and rc is the radius vector determining the location of the contact
point with respect to the center of mass of the particle (see Fig. 2).

We also introduce the velocity of the contact point of the particle Vc. The change in this velocity due to the
impact is described by the kinematic relation

ΔVc ≡ V +
c − V −

c = ΔVp + Δωp × rc. (2)

It follows that ΔVp = ΔVc −Δωp×rc. Substituting this expression into the left side of the first equation in system
(1), we find S. Then, substituting the result into the second equation, we obtain

m−1
p ‖Jp‖Δωp = rc × ΔVc − rc × [Δωp × rc]. (3)

The vector relation (3) contains two unknown vectors ΔVc and Δωp. The vector ΔVc can be defined by setting
the coefficients of recovery of the normal and tangent-to-the-wall components of the particle velocity vector at the
contact point: anc = −V +

cn/V
−
cn and aτc = V +

cτ /V
−
cτ . In the present work, we assume that the coefficient aτc equals

zero (this condition corresponds to the absence of particle slipping at the contact point at the moment of particle
rebound from the surface) and anc = 0.8, which is a certain mean value for the impact angles α1 (see below) ranging
from 0 to ≈40◦ in the range of impact velocities from 50 to 350 m/sec [8].
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Let up, vp, and wp and uc, vc, and wc be the components of the vectors Vp and Vc, respectively, in the
coordinate system Oxyz. Then, the components Δuc, Δvc, and Δwc of the vector ΔVc are expressed via the
components of the vector Vc and the coefficients anc and aτc as follows:

Δuc = −u−c , Δvc = −(anc + 1)v−c , Δwc = −w−
c . (4)

It seems reasonable to consider the rotational motion of the particle and the components of its angular
velocity in the particle-fixed coordinate system Opξηζ, because the tensor ‖Jp‖ in this case has only diagonal
nonzero components Jpξ, Jpη, and Jpζ , which are the main moments of inertia of the particle. We write the vector
relation (3) in projections onto the axes of the particle-fixed coordinate system:

ĴpξΔωpξ = ηcΔVcζ − ζcΔVcη − η2
cΔωpξ + ξcηcΔωpη + ξcζcΔωpζ − ζ2

c Δωpξ,

ĴpηΔωpη = ζcΔVcξ − ξcΔVcζ − ζ2
c Δωpη + ηcζcΔωpζ + ηcξcΔωpξ − ξ2c Δωpη, (5)

ĴpζΔωpζ = ξcΔVcη − ηcΔVcξ − ξ2cΔωpζ + ζcξcΔωpξ + ζcηcΔωpη − η2
cΔωpζ .

Here Ĵpi = Jpi/mp (i ≡ ξ, η, ζ) and ξc, ηc, and ζc are the components of the radius vector rc. Relations (5) are a
system of linear algebraic equations with respect to Δωpξ, Δωpη, and Δωpζ , which has the following matrix form:⎛

⎝ Ĵpξ + η2
c + ζ2

c −ξcηc −ξcζc
−ηcξc Ĵpη + ζ2

c + ξ2c −ηcζc
−ζcξc −ζcηc Ĵpζ + ξ2c + η2

c

⎞
⎠

⎛
⎝ Δωpξ

Δωpη

Δωpζ

⎞
⎠ =

⎛
⎝ ηcΔVcζ − ζcΔVcη

ζcΔVcξ − ξcΔVcζ

ξcΔVcη − ηcΔVcξ

⎞
⎠ . (6)

By solving this system, we obtain the values of Δωpξ, Δωpη, and Δωpζ . The components of the vector of angular
velocity of the particle at the rebound moment can be easily obtained in the particle-fixed coordinate system

ω+
pξ = ω−

pξ + Δωpξ, ω+
pη = ω−

pη + Δωpη, ω+
pζ = ω−

pζ + Δωpζ . (7)

To study the scattering of reflected particles, we have to determine the rebound direction of an individual
particle with an arbitrary orientation prior to the impact with the surface. Obviously, this direction coincides with
the direction of the velocity vector of the center of mass of the particle at the rebound moment V +

p . Taking into
account relation (2), we can calculate the vector V +

p as follows:

V +
p = V −

p + ΔVp = V −
p + ΔVc − Δωp × rc. (8)

The velocity vector of the center of mass of the particle before the impact V −
p is usually defined (or is obtained from

particle trajectory calculations) by the components u−p , v−p , and w−
p in the stationary coordinate system Oxyz. The

components of the vector ΔVc in the right side of Eq. (8) are determined in this coordinate system by relations (4),
where u−c , v−c , and w−

c can be found from the kinematic relation Vc = Vp + ωp × rc. Thus, to find the components
u+

p , v+
p , and w+

p of the vector V +
p with the use of Eq. (8), we have to calculate the vectors ωp, Δωp, and rc in

the coordinate system Oxyz, which are found from the equations of particle dynamics, usually in the particle-fixed
coordinate system Opξηζ.

In the coordinate systems Oxyz and Opξηζ, the components of any vector b are related as [9]⎛
⎝ bξ

bη
bζ

⎞
⎠ = A

⎛
⎝ bx

by
bz

⎞
⎠ ,

⎛
⎝ bx

by
bz

⎞
⎠ = At

⎛
⎝ bξ

bη
bζ

⎞
⎠ , (9)

where A is the rotation transformation matrix whose elements can be expressed via the Euler angles ϕ, ψ, and
θ [9]; At is the transposed matrix (At coincides with the inverse matrix A−1). In the description of kinematics of
rotational motion of the particle, however, it seems reasonable to use the mathematical apparatus of Rodrigues–
Hamilton quaternions rather than the Euler angles, because the system of kinematic equations has no singularities
in such a case [10]. Formally, this means the transition to new variables λk (k = 0, 1, 2, 3) related to the angles ϕ,
ψ, and θ as

λ0 = cos (ϕ/2) cos (ψ/2) cos (θ/2) − sin (ϕ/2) sin (ψ/2) sin (θ/2),

λ1 = sin (ϕ/2) cos (ψ/2) cos (θ/2) + cos (ϕ/2) sin (ψ/2) sin (θ/2),

λ2 = cos (ϕ/2) sin (ψ/2) cos (θ/2) + sin (ϕ/2) cos (ψ/2) sin (θ/2),

λ3 = cos (ϕ/2) cos (ψ/2) sin (θ/2) − sin (ϕ/2) sin (ψ/2) cos (θ/2).
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The matrix A is expressed through the variables λk as follows:

A =

⎡
⎣ λ2

0 + λ2
1 − λ2

2 − λ2
3 2(λ0λ3 + λ1λ2) 2(λ1λ3 − λ0λ2)

2(λ1λ2 − λ0λ3) λ2
0 − λ2

1 + λ2
2 − λ2

3 2(λ0λ1 + λ2λ3)
2(λ0λ2 + λ3λ1) 2(λ2λ3 − λ0λ1) λ2

0 − λ2
1 − λ2

2 + λ2
3

⎤
⎦ . (10)

Knowing the angles ϕ, ψ, and θ responsible for the spatial orientation of the particle at the impact moment
or, which is the same, λ0, λ1, λ2, and λ3, we calculate the elements of the matrix A and find, using the second
relation in (9),⎛

⎝ ωpx

ωpy

ωpz

⎞
⎠ = At

⎛
⎝ ωpξ

ωpη

ωpζ

⎞
⎠ ,

⎛
⎝ Δωpx

Δωpy

Δωpz

⎞
⎠ = At

⎛
⎝ Δωpξ

Δωpη

Δωpζ

⎞
⎠ ,

⎛
⎝ rcx

rcy

rcz

⎞
⎠ = At

⎛
⎝ ξc

ηc

ζc

⎞
⎠ . (11)

After these transformations, we use Eq. (8) to obtain the final expressions for the components of the vector V +
p in

the coordinate system Oxyz:

u+
p = u−p + Δuc − Δωpyrcz + Δωpzrcy,

v+
p = v−p + Δvc − Δωpzrcx + Δωpxrcz, (12)

w+
p = w−

p + Δwc − Δωpxrcy + Δωpyrcx.

Thus, if the velocity of the center of mass of the particle V −
p , its angular velocity ω−

p , and particle orientation
in space (values of λ0, λ1, λ2, and λ3) are known at the impact moment, we can calculate the velocity of the center
of mass of the particle and its angular velocity at the rebound moment in the coordinate system Oxyz using the
kinematic dependence V −

c = V −
p + ω−

p × rc and relations (4), (6), (7), and (10)–(12). Note that the location of
the contact point with respect to the center of mass rc is uniquely determined by particle orientation at the impact
moment.

Thus, we analyzed particle reflection from a smooth surface. To apply the same approach for determining
particle parameters in the case of its rebound from a rough surface, we need to specify the surface relief. (Various
aspects of modeling of this relief are considered below.) In the present paper, we consider particles whose diameter
is smaller than the mean distance between the neighboring relief peaks (such a situation is typical of roughness
induced by abrasive erosion). Therefore, the incident particle reflected from the wall can collide with the surface of
the rough relief several times (Fig. 3). The following scheme is used to calculate particle interaction with a rough
relief. The problem of the first impact is considered similarly to the problem of particle impact on a smooth flat
surface, but the coordinate system Oxyz is introduced in a plane tangential to the relief surface at the particle–
surface contact point. After particle rebound, we calculate the inertial motion of the freely rotating particle and
ignore the forces and torque acting from the carrier gas. If the particle collides with the relief for the second time,
we again solve the problem of its impact on the surface (construct a plane tangential to the relief surface at the
new contact point, etc.). The particle is assumed to be finally and completely reflected if it leaves the region of
the relief. The parameters of particle motion after the last collision with the relief are taken as the parameters of
particle reflection from the surface. We denote the velocity vector of the center of mass of the particle and the
vector of its angular velocity by Vp1 and ωp1 before the first collision with the surface and by Vp2 and ωp2 after the
last collision (see Fig. 3).

2. Model of the Rough Surface. The study of the surface of ductile metal samples subjected to a high-
speed (100–300 m/sec) flow of a gas with solid particles showed that the roughness resulting from abrasive erosion
for angles α1 < 40◦ (see Fig. 3) has the form of transverse waves whose profile depends on the particle size, particle
velocity, and impact angle. One of these samples is shown in Fig. 4. The roughness structure has an essentially two-
dimensional character. The roughness relief, therefore, was described in the present study by a two-dimensional
profile Y = Yw(X) in the coordinate system OXY , where the axis OX is directed along the surface across the
roughness “waves,” and the axis OY is directed normal to the surface. By summarizing the measurements of the
real roughness profiles on various samples by a “Rank Taylor Hobson” profilometer, we determined the dependence
Y = Yw(X) (Fig 4c), which was very close to a quasi-periodic function with a certain random scattering of the
period and amplitude.
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Fig. 4. Schematic of the flow (a), sample of the rough surface induced by abrasive erosion (b), and
two-dimensional profile of roughness (c).

As the length of the samples of real profiles was comparatively small (about 2.5 cm), a numerically generated
(model) profile of a greater length L was used to study the statistical characteristics of scattering of reflected
particles. The value of L was chosen such that the scattering characteristics were almost independent of it. The
following algorithm was used to construct the model profile. A sequence of K points was set in the plane OXY .
The coordinates of these points were determined by the relations Xi = Xi−1 + χ (i = 2, . . . ,K) and Yi = γ

(i = 1, . . . ,K), where χ and γ are random quantities, which obey the normal distribution law with the mean values
and standard deviations Mχ = h/2, σχ < h/6 and Mγ = 0, σγ � Yw,max/3, respectively. The parameters h and
Yw,max correspond to the mean step and the maximum height of roughness peaks. In generating the values of Xi

and Yi, if at least one of the values was outside the intervals Xi−1 +Mχ ± 3σχ and ±3σγ , respectively, this value
was rejected and generated again. The sequence of the resultant points (Xi, Yi) was smoothed by a cubic spline,
which was considered as the roughness profile Y = Yw(X). The parameters Mχ, σχ, and σγ were chosen under the
conditions of the best fit of the scattering properties of the model and real profiles of roughness. In the present
work, we used the values of the parameters Mχ = 80 μm, σχ = 10 μm, and σγ = 20 μm, which correspond to the
scattering properties of the sample shown in Fig. 4.
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3. Scattering of Reflected Particles. The particles incident onto a flat rough surface at a specified
angle α1 (see Fig. 3) with identical translational and angular velocities (Vp1 and ωp1) are reflected from the surface
with different velocities Vp2 (in magnitude and direction) because of the random orientations of the particles
before the impact and their random locations with respect to the roughness relief. The phenomenon of rebound of
particles with identical values of Vp1, ωp1, and α1 in random directions is called the scattering of particles during
their reflection from the surface. The direction of particle rebound can be described by the angles α2 and β2 (Fig. 5).
The angle α2 can vary from 0 to π, and the angle β2 can vary from −π/2 to π/2. Let N be the number of particles
with fixed parameters Vp1 and ωp1 incident onto the surface at an angle α1 and dN(α2, β2, dα2, dβ2) be the number
of particles reflected in the direction defined by the intervals of the angles [α2, α2 + dα2] and [β2, β2 + dβ2]. We
introduce the function I(α2, β2) of the distribution of the reflected particles with respect to the angles α2 and β2 by
the relation I(α2, β2) dα2 dβ2 = dN(α2, β2, dα2, dβ2)/N . The expression I(α2, β2) dα2 dβ2 is actually the probability
of particle rebound in the direction (α2, β2) in the intervals of the angles dα2 and dβ2. The function I(α2, β2) will
be called the spatial scattering indicatrix. Integrating I(α2, β2) with respect to β2 from −π/2 to π/2, we obtain
the scattering indicatrix in the plane OXY , which yields the distribution of reflected particles with respect to the
angle α2 only. We denote this indicatrix by F (α2).

In this work, we found the scattering indicatrices of particles reflected from a smooth surface and from a
rough surface by direct Monte Carlo simulations. A uniform rectangular grid with steps Δα2 = Δβ2 = π/180 was
introduced in the domain of the variables 0 � α2 � π and −π/2 � β2 � π/2. Reflection of a large number of
particles (N ≈ 107) was calculated; before the impact, the Euler angles ϕ, ψ, and θ for each particle were set in
a random manner on the basis of a uniform distribution. For the rough surface, the particle location with respect
to the roughness profile was randomly specified. We determined the number of reflected particles Nij located in
the grid cell (ij), i.e., particles whose reflection angles α2 and β2 were in the intervals (i − 1)Δα2 � α2 < iΔα2

and (j − 1)Δβ2 � β2 < jΔβ2. Then, we calculated the ratio Nij/N , which is close to the probability of particle
reflection in the direction determined by these intervals of angles, if the value of N is sufficiently large. After that,
we calculated an approximate value of the function I in the cell considered:

I(α2, β2)ij ≈ Nij

NΔα2Δβ2
.

After calculating the values of I(α2, β2)ij in all cells, we obtained the distribution function of reflected particles in
the entire range of variation of the angles. The particle distribution with respect to the angle α2 only [scattering
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a smooth surface (a) and a rough surface (b): 1) sphere; 2) extended ellipsoid of
revolution (b/a = 0.8); 3) flattened ellipsoid of revolution (b/a = 1.25); 4) extended
prism (b/a = c/a = 0.8); 5) flattened prism (b/a = c/a = 1.25); 6) prism with
truncated vertices (b/a = 0.6 and c/a = 0.8).

indicatrix F (α2) in the plane OXY ] was obtained by calculating the values of

F (α2)i ≈ 1
NΔα2

∑
j

Nij

in all grid intervals along the axis α2 [summation of the number of reflected particles in the last relation is performed
over all cells (ij) with a fixed value of i].

Based on results of numerical simulations of scattering of differently shaped particles, we determined both
the spatial indicatrices I(α2, β2) and the indicatrices F (α2). The coordinate system was chosen such that the
velocity vector Vp1 lied in the plane OXY . The roughness was assumed to be two-dimensional and to be described
by the profile in the plane OXY (see Sec. 2). We assumed that the particles did not rotate before their first impact
onto the surface (ωp1 = 0). The particle shapes considered were extended ellipsoids of revolution with the axes
ratio b/a = 0.8, flattened ellipsoids of revolution with the axes ratio b/a = 1.25, extended rectangular prisms with
the ratio of the sides b/a = c/a = 0.8, flattened prisms with the ratio of the sides b/a = c/a = 1.25, and prisms
with truncated vertices with the ratios of the sides b/a = 0.6 and c/a = 0.8 (see Fig. 1). The value of a was taken
to be 32 μm. The calculations showed that variations of a in a wide range (provided that the value of a is smaller
than the distance between the peaks of the roughness profile) has almost no effect on the form of the indicatrices.

As it could be expected, the spatial indicatrices turned out to be symmetric with respect to the plane OXY .
We present the results for the indicatrices F (α2) obtained for α1 = 15◦. Figure 6a shows the scattering indicatrices
of differently shaped particles reflected from a smooth wall. The indicatrices for ellipsoidal and prismatic particles
are seen to be substantially different. Prismatic particles are much more scattered over the angle α2, and the
dominating angle of their rebound is substantially different from the angle of rebound of spherical particles α0

2. In
the case of particle reflection from a rough surface, the scattering indicatrices are considerably different (Fig. 6b).
The indicatrices of particles of all shapes considered (and also spherical particles) are rather close to each other,
and the most probable angle of particle rebound in the plane OXY is substantially greater than the most probable
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angle α2 in the case of particle reflection from a smooth surface. The scatter of the values of the angle α2 is also
greater. A comparison of indicatrices in Figs. 6a and 6b shows that surface roughness induced by abrasive erosion
leads to substantial differences in the characteristics of scattering of reflected particles from the those for the case of
a smooth surface, and the effect of roughness is particularly significant for ellipsoidal particles. At the same time,
surface roughness reduces the influence of the particle shape, and the scattering indicatrices are close to each other
for particles of all shapes.

This work was supported by the Russian Foundation for Basic Research (Grant No. 05-08-50075).
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